Elite Opposition-Based Water Wave Optimization Algorithm for Global Optimization
نویسندگان
چکیده
منابع مشابه
Elite Opposition-based Artificial Bee Colony Algorithm for Global Optimization
Numerous problems in engineering and science can be converted into optimization problems. Artificial bee colony (ABC) algorithm is a newly developed stochastic optimization algorithm and has been widely used in many areas. However, due to the stochastic characteristics of its solution search equation, the traditional ABC algorithm often suffers from poor exploitation. Aiming at this weakness o...
متن کاملElite Opposition-Based Social Spider Optimization Algorithm for Global Function Optimization
Abstract: The Social Spider Optimization algorithm (SSO) is a novel metaheuristic optimization algorithm. To enhance the convergence speed and computational accuracy of the algorithm, in this paper, an elite opposition-based Social Spider Optimization algorithm (EOSSO) is proposed; we use an elite opposition-based learning strategy to enhance the convergence speed and computational accuracy of ...
متن کاملOpposition Based ElectromagnetismLike for Global Optimization
Electromagnetism-like Optimization (EMO) is a global optimization algorithm, particularly well-suited to solve problems featuring non-linear and multimodal cost functions. EMO employs searcher agents that emulate a population of charged particles which interact with each other according to electromagnetism’s laws of attraction and repulsion. However, EMO usually requires a large number of itera...
متن کاملImproved Cuckoo Search Algorithm for Global Optimization
The cuckoo search algorithm is a recently developedmeta-heuristic optimization algorithm, which is suitable forsolving optimization problems. To enhance the accuracy andconvergence rate of this algorithm, an improved cuckoo searchalgorithm is proposed in this paper. Normally, the parametersof the cuckoo search are kept constant. This may lead todecreasing the efficiency of the algorithm. To cop...
متن کاملSTATIC AND DYNAMIC OPPOSITION-BASED LEARNING FOR COLLIDING BODIES OPTIMIZATION
Opposition-based learning was first introduced as a solution for machine learning; however, it is being extended to other artificial intelligence and soft computing fields including meta-heuristic optimization. It not only utilizes an estimate of a solution but also enters its counter-part information into the search process. The present work applies such an approach to Colliding Bodies Optimiz...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Problems in Engineering
سال: 2017
ISSN: 1024-123X,1563-5147
DOI: 10.1155/2017/3498363